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Nonradiating electromagnetic sources are sources whose field is identically zero outside of their volume.
They are undetectable unless the observation point is in direct contact with them. They are the basis of the
theory of source equivalence, which studies the field invariance with respect to source transformations. In this
work, we focus on the equivalent source transformations in a nonuniform medium and the implications in the
theory of the electromagnetic vector potentials. We identify three types of nonradiating sources. Subsequently,
we define the mathematical transformations of the sources, which preserve the field outside of their support
ssource invarianced. We give complimentary expressions, which preserve the field inside the source support as
well. We show that the nonuniqueness of the electromagnetic potentials is due to the nonunique solution to the
inverse problem. The well known field gauge invariance follows from its source invariance. Also, the gauge-
invariant transformation appears to be just one possibility in an infinite set of field-invariant vector-potential
representations all related to the respective equivalent source transformations.

DOI: 10.1103/PhysRevE.71.016617 PACS numberssd: 03.50.De, 41.20.Jb, 95.75.Pq

I. INTRODUCTION AND DEFINITIONS

The sources of the electromagnetic field are time-varying
electric and magnetic current densities, the latter being com-
monly treated as fictitious quantities. We assume that the
charge densities are related to their respective current densi-
ties via the continuity law.

Two sources are consideredequivalentif they generate
identical fields. In general, the fields have to be identical
outside the volumes of each of the sources and their spatial
derivatives, while they may differ insidef1g. Hereafter, the
volume where a source and its derivatives are nonzero is
referred to as itssupport. We assume that this support is
finite.

A source generating an electromagnetic field confined
within its support is callednonradiatingf2g. A nonradiating
source is undetectable unless the observation point is on or
within its volume. It is now obvious that two sources are
equivalent if their difference is a nonradiating source of
bound supportf1g. Their fields are equivalent outside of the
support of the nonradiating “difference” source. Thus, the
source equivalence requires a clear understanding of the non-
radiating electromagnetic sources.

Nonradiating sources and source equivalence have been
considered almost exclusively in a uniform medium, see, for
example,f1–6g. Classes of nonradiating sources have been
identified in optics, see for examplef7,8g based on the equa-
tion of radiative transfer as well as its diffusion approxima-
tion, i.e., the equation of photon density distribution. General
approaches to the identification of the radiating and nonradi-

ating parts of a source distribution have also been proposed
f9,10g. The attention has always been on the field extinction
outside of the source support, while the field within the non-
radiating source is usually not considered.

Notably, the specifics of the case of a nonuniform medium
have been considered inf11g—a work where the construc-
tion of equivalent sources for numerical computations is the
focus. The mathematical procedure for the construction of
the equivalent source is based on a Helmholtz representation
of the source vectors. Arbitrarily oriented electric-magnetic
source configurations are transformed into equivalent single-
component codirectionalsn̂-orientedd densities of electric
and magnetic currents distributed in planes orthogonal ton̂.
The procedure is referred to as TE/TM source decomposi-
tion, also, source scalarization. The transformation is inde-
pendent of the constitutive parameters, and it allows field
computations in terms of two scalar functions of space-time.

In this work, we state clearly the mathematical form of
the nonradiating sources and the related source equivalence
in the case of a nonuniform isotropic medium—a case of
significant importance in computational electromagnetics
and practical inverse scattering problems. We also show how
to recover the original field inside the source support. We
thus hope to fill in a gap in the current knowledge on the
nature of electromagnetic source equivalence and its numeri-
cal implementation.

Most importantly, we consider the nonradiating sources
not only in the context of field-based analysis with Max-
well’s equations but also in the context of the electromag-
netic vector potentials. We show that the nonuniqueness of
the vector-potential representation of the electromagnetic
field is a direct consequence of the nonunique solution to the
inverse problem. In other words, for a given physically ob-
servable field, mathematically, there exists an infinite set of
sources capable of generating it. Accordingly, there is an
infinite set of vector potentials, which represent the same
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electromagnetic field. What is considered by some to be a
“drawback” of the vector potentials as opposed to the field
vectorsE andH is, in fact, a remarkable feature allowing us
to identify sources, which are “nonradiating” for the field
vectors but are “radiating” for the vector potentials. This
theory has potentially important implications in the ongoing
dispute on the measurability of the vector potentials as well
as in the electromagnetic source identification.

The analysis is carried out in the time domain; however,
the results are easily transferrable into the frequency domain
as explained in the next section.

The paper is organized as follows. We first define three
basic types of nonradiating sources. We then consider the
equivalence of sources, and suggest a general approach to the
construction of equivalent sources for a given original set of
sources. Further, we consider the nonradiating sources in
conjunction with the vector potentials. We focus on the re-
lated nonuniqueness of the vector potentials and the electro-
magnetic field invariance.

II. NOTATIONS

First-order partial derivatives are denoted concisely by]j,
i.e., ]j=] /]j. Similarly, higher-order derivatives appear as
]jz=]2/]j]z, etc.

The operatorsTe andTm relate to the time derivatives of
the flux densitiesD andB, respectively,

]tD = T«E, ]tB = TmH . s1d

For example, in a nondispersive medium,Te=e]t+se and
Tm=m]t+sm, wheree is the permittivity,m is the permeabil-
ity, se andsm are the specific electric and magnetic conduc-
tivities, respectively. The formulas in Eq.s1d are in effect the
time-dependent constitutive relations. The involved constitu-
tive parameters are tensors in the case of an anisotropic me-
dium although here we focus on the isotropic case.

We also make use of the operatorsT e
−1 and T m

−1, which
are the inverse ofTe andTm, respectively. They have simple
analytical form in the case of a dispersion-free loss-free me-
dium, e.g.,Te

−1=e−1et. In the case of a dispersive lossy me-
dium, general analytical expressions are not available, how-
ever, their discrete numerical counterparts always exist. We
also use the second-order operatorTme=TmTe. In a nondis-
persive medium,Tme=me]tt+sesm+msed]t+sesm.

In the nonuniform medium analysis, where the gradients
of the constitutive parameters are involved, we use the gra-
dient vector operatorss=Ted and s=Tmd:

s=Ted = s=ed]t + s=sed,

s=Tmd = s=md]t + s=smd, s2d

so that, for example,

s=TedF = s=ed]tF + s=sedF,

s=Ted 3 Fe = s=ed 3 ]tFe + s=sed 3 Fe, s3d

whereF is a scalar andFe is a vector.

The time-domain analysis given hereafter can be directly
transferred into the frequency domain with the replacement
of the operatorsTe andTm by jvẽ and jvm̃, respectively, in
the phasor form of Maxwell’s equations, or in the Helmholtz
equation. Here,ẽ and m̃ are the complex permittivity and
permeability, respectively.

III. NONRADIATING CURRENT SOURCES IN A
NONUNIFORM MEDIUM

Previous work, e.g.f1,2g, formulates two classes of non-
radiating current densities in a uniform medium—those ex-
pressible in terms of the gradient of a scalar, and those which
are functions of a vector. Here, we give expressions for non-
radiating electromagnetic sources valid in nonuniform me-
dia. They appear as generalizations of the sources discussed
in f1,2g. We add a third class of nonradiating sourcesssee
theorem 2d, which uses a specific combination of electric and
magnetic current densities.

Theorem 1. Sources of bound support in the form of elec-
tric current density

Je
nr = T« = Pe s4d

and/or magnetic current density

Jm
nr = Tm = Pm s5d

do not generate an electromagnetic field outside of their own
support. Pe and Pm can be any scalar functions of space-time
whose first-order derivatives are well defined. The field they
generate is localized at points of nonzeroJe

nr, where

E = − = Pe, s6d

and nonzeroJm
nr, where

H = − = Pm. s7d

Proof. The field excited byJe
nr andJm

nr satisfies the Max-
well equations

= 3 H = T«E + T« = Pe,

− = 3 E = TmH + Tm = Pm. s8d

We are interested in the particular solution corresponding to
the specified sources only, and to the field zero boundary
conditions. Equations8d can be rewritten as

= 3 H8 = T«E8,

− = 3 E8 = TmH8, s9d

whereH8=H + = Pm andE8=E+ = Pe. SinceJe
nr andJm

nr are
of bound support, the particular solution of interest to Eq.s9d
is trivial: H8=0, E8=0. Thus the fieldE andH generated by
Je

nr andJm
nr is localized at the sources and is given by Eq.s6d

and Eq.s7d. j
A simple example is the current density in a conducting

medium under steady-current conditions, whereE=−=f, f
being the electric scalar potential. The current density isJe
=−se=f. This is a particular form of Eq.s4d wheref=Pe,
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and Te reduces toTe=se sincef is constant in time,e]tf
=0. It is well known that steady currents do not radiate.

However, in a uniform medium, even if the current is
time-varying, it would not radiate beyond its support, pro-
vided that in space it can be represented by the gradient of a
scalar:Je

nr= = sTePed. Curl-free currents do not radiate. They
are due to external electromotive forces, which are conserva-
tive in nature. Gradient type nonradiating sources in a uni-
form medium are discussed inf1g; see alsof9g. Note that the
source equal to the gradient of a scalar may, in general, ra-
diate if it exists in a locally nonuniform medium.

Theorem 2. Combinations of electric and magnetic cur-
rent densities of the forms

Je
nr = − T«E, Jm

nr = − = 3 E s10d

and

Jm
nr = − TmH, Je

nr = = 3H, s11d

whereE andH can be any vectors with well defined deriva-
tives, produce zero field outside of their own support.

Proof. Consider the source set in Eq.s10d. Substituting it
in Maxwell’s equations, we have

= 3 H = T«sE −Ed,

− = 3 sE −Ed = TmH . s12d

As before, we are concerned only with the particular solution
due to the specified sourcesswith zero boundary conditions
for the fieldd. With respect to the vectorsH and E8=E−E,
the system above is homogeneous, i.e., source-free; there-
fore, the solution is

E =E, H = 0. s13d

Analogously, in the case of the source given by Eq.s11d,
the solution appears as

E = 0, H =H. s14d

Both solutions are local in the sense that they are nonzero
only inside the source. j

As an example, consider the time-varying current in a
wire loop whose density is expressed asJe=ŵe]tE, whereŵ
is the unit vector in cylindrical coordinates, andE is constant
along the loop. The loop is centered onto the origin of the
coordinate system and its axis is along thez axis. Its radius is
a. A magnetic currentIm along thez axis can now be defined:

Im =E E
A

Jm · ẑds. s15d

We setJm= = 3E as per Eq.s10d. Using Stokes theorem, we
find that

Im = 2paE,V. s16d

If Im is placed at the origin together with the electric-current
loop, their respective fields will cancel outside of the volume
of the loop, resulting in a zero total field. The equivalence of
the fields due to small electrical loops and magnetic dipoles
has long been known to antenna engineers, and is widely

used in conjunction with electromagnetic duality, see, for
example,f12g.

Theorem 3. Assume that the vector fieldA satisfies the
equation

LA = G, s17d

where L is any linear operator, andG represents sources. If
sources exist, which are expressible in the from

Gnr = LB, s18d

then these sources do not radiate beyond their own support.
The vectorB is exactly the nonpropagating vector field gen-
erated byGnr.

Proof. In the presence of the source in Eq.s18d, Eq. s17d
can be written as

LsA − Bd = 0. s19d

As both vector fieldsA andB satisfy the same zero boundary
conditions, the above equation has only a trivial particular
solution for the given sources. ThusA ;B. j

The above theorem leads to the formulation of yet another
type of nonradiating electromagnetic sources. Having in
mind the vector equation for theE-field in the presence of
electrical current densities,

= 3 T m
−1 = 3 Ee + TeEe = − Je, s20d

we conclude that in a nonuniform medium electrical sources
of the type

− Je
nr = = 3 T m

−1 = 3 E + TeE s21d

produce zeroE-field outside of the support ofE, i.e., Ee
nr

=E. Then, from Maxwell’s equations,He
nr=−T m

−1= 3E.
Similarly, the vector equation for theH-field in the pres-

ence of magnetic sources is

= 3 T e
−1 = 3 Hm + TmHm = − Jm. s22d

Thus, if these sources are given by

− Jm
nr = = 3 T e

−1 = 3H + TmH, s23d

thenHm
nr=H, andEm

nr=T e
−1= 3H.

The nonradiating sources defined by Eq.s21d and Eq.s23d
are generalizations of a nonradiating source first considered
by Devaneyet al. f2g.

IV. EQUIVALENCE OF CURRENT SOURCES

A. Equivalence between electric and magnetic current sources

Theorem 4. The field generated by the magnetic current
densityJm is identical to the field generated by the electric
current densityJe outside the sources’ support provided that

= 3 T m
−1Jm = Je, s24d

or

− = 3 T e
−1Je = Jm. s25d

Proof. This theorem follows directly from theorem 2. For
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example, assume thatJm in Eq. s24d is expressed asJm
=−TmH. It generates the fieldsEm,Hmd. It then follows that
Je in Eq. s24d is Je=−= 3H. Let its field besEe,Hed. If we
consider the source set formed byJm and −Je, we see that it
is nonradiating, see Eq.s11d. This proves thatJe andJm are
equivalent, and their respective fields are identical outside of
the support ofH. The difference field is nonzero only inside
the support ofH, and it is

Em − Ee = 0,

Hm − He =H. s26d

Analogous proof holds for the equivalence of the sources
given in Eq.s25d. This time the difference between the two
fields is

Ee − Em =E,

He − Hm = 0, s27d

wheresEe,Hed is the field due toJe=−TeE, andsEm,Hmd is
the field due toJm= = 3E. j

To recapitulate, we reexpress Theorem 4 in terms of the
auxiliary vectorsE andH, and state thatthe electric current
density Je= = 3H is equivalent to the magnetic current
density Jm=TmH. The dual equivalence involvesJm= =
3E and Je=−TeE.

Theorem 4 is an extension of the electric-magnetic source
equivalence considered first by Mayesf4g to the case of a
nonuniform medium.

The above theorem suggests the existence of two equiva-
lent current distributions for a given original source. This
deserves some additional comment. Suppose the original
source is given byJe

o. Then, there are two possible equivalent
magnetic current distributions,Jm1

e andJm2
e , such that

= 3 T m
−1Jm1

e = Je
o, s28d

Jm2
e = − = 3 T e

−1Je
o. s29d

Hence,Jm1
e andJm2

e must be mutually equivalent, too. This is
true, and it can be shown by considering their difference. We
apply the operator=3T m

−1 to Eq. s29d and form an expres-
sion for the difference of the two magnetic equivalent
sources:

= 3 T m
−1sJm2

e − Jm1
e d = − s= 3 T m

−1 = 3 T e
−1Je

o + Je
od.

s30d

The left-hand side, by its dimensionality, corresponds to an
equivalent electric current densityfsee also Eq.s24dg, dJe

e,
such that

dJe
e = − s= 3 T m

−1 = 3 T e
−1Je

o + Je
od, s31d

which can be reexpressed in the form

dJe
e = − s= 3 T m

−1 = 3 E + TeEd, s32d

whereJe
o=TeE. This expression, as we showed before in Eq.

s21d, indicates a nonradiating electric source in a nonuniform
medium.

The equivalence of any two sources can be validated by
considering their difference. If it produces a nonradiating
source, the fields of these two sources are identical outside of
the support of this “difference” source.

B. Recursive source transformations

Provided that the higher-order derivatives of the original
current densities exist, we can apply the equivalent source
transformations Eq.s24d and Eq.s25d, recursively. In other
words, we can find the equivalent of the original source, then
the equivalent of the equivalent, and so on. Therefore, there
is an infinite number of equivalent sources for an original
source whose higher-order derivatives exist.

Consider as an example an original source given byJe1
=−TeE1. From Eq.s25d, an equivalent magnetic current den-
sity Jm2= = 3E1 is found, with the equivalent fields being
H2=H1, E2=E1−E1, as per Eq.s27d. Further, from Eq.s24d,
we find the equivalentJe3 as

Je3 = = 3 T m
−1Jm2 = = 3 T m

−1 = 3 E1. s33d

This can be written also as

TeE3 = − = 3 T m
−1 = 3 E1, s34d

whereJe3=−TeE3. The field sE3,H3d, generated byJe3 re-
lates tosE2,H2d asE3=E2, H3=H2+T m

−1= 3E1, according
to Eq. s26d, where we have substitutedH2=−T m

−1= 3E1.
The latter comes from representingJm2 asJm2=−TmH2 as in
the proof of theorem 4, and then equating this toJm2= =
3E1. Finally, the difference between the equivalent field
sE3,H3d and the original fieldsE1,H1d, is

H3 − H1 = T m
−1 = 3 E1,

E3 − E1 = −E1. s35d

The difference field is nonzero only within the support ofE1.
Note that the equivalence of the first and the third source

is evident also from the fact that their difference yields

Je3 − Je1 = TeE1 + = 3 T m
−1 = 3 E1, s36d

which is a nonradiating source of the form of Eq.s21d with a
minus sign. The difference field derived in Eq.s35d corre-
sponds exactly to the field of the nonradiating source defined
by Eq. s21d with a minus sign.

In the time domain, the second-order source transforma-
tion given by Eq.s34d leads to a sequence of sources derived
from each other as time progresses. This equivalent-source
“propagation” is wavelike and very much analogous to the
way the field itself propagates.

Higher-order recursive transformations are possible with
sources whose respective derivatives exist.

V. NONRADIATING SOURCES AND
VECTOR POTENTIALS

A. Vector potentials in a nonuniform medium

The vector-potential representation in a nonuniform iso-
tropic medium in the presence of electrical and magnetic
currents isf13,14g
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=2Am − TmeAm + s=Ted 3 Fe + s=TedF = − Je, s37d

=2Fe − TmeFe − s=Tmd 3 Am + s=TmdC = − Jm, s38d

where the magnetic potentialAm smeasured inamperesd and
the electric potentialFe smeasured involtsd relate to the con-
ventional vector potentialsA and F as Am=A /m and Fe

=F /e. The scalar potentialsF andC are defined through a
generalized Lorenz gauge

− TeF = = ·Am,

− TmC = = ·Fe. s39d

The vector-potential equations, Eqs.s37d and s38d, are
coupled if the medium is nonuniform. Otherwise, they de-
couple and reduce to the conventional wave equations:

=2Am − TmeAm = − Je, s40d

=2Fe − TmeFe = − Jm. s41d

The field-potential relations are obtained by writing Eqs.
s37d ands38d in a form equivalent to that of Maxwell’s equa-
tions f13g:

− = 3 s− TeFe − = C + = 3 Amd

+ Tes− TmAm − = F − = 3 Fed = − Je, s42d

= 3 s− TmAm − = F − = 3 Fed

+ Tms− TeFe − = C + = 3 Amd = − Jm. s43d

The comparison between Eqs.s42d and s43d and Maxwell’s
equations,

− = 3 H + TeE = − Je,

= 3 E + TmH = − Jm, s44d

shows that the field vectors appear in terms of the vector
potentials as

E = − TmAm − = F − = 3 Fe,

H = − TeFe − = C + = 3 Am. s45d

The substitution of Eqs.s45d into Maxwell’s system leads to
an alternative field-potential relation:

TeE = = 3 s= 3 Am − TeFed − Je,

TmH = = 3 s= 3 Fe + TmAmd − Jm. s46d

Equations45d and Eq.s46d are equivalent.

B. Nonradiating gradient sources and gauge invariance

Assume the existence of nonradiating sources of the type
given by Eqs.s4d and s5d. They generate vector potentials,
Am

nr andFe
nr, whose solutions, as shown in Appendix B, are

TmAm
nr = = Lm, TeFe

nr = = Le. s47d

Here, Lm=Pe−w and Le=Pm−c, with w and c being the
scalar potentials toAm

nr andFe
nr, respectively. SinceAm

nr and
w, as well asFe

nr andc, relate through the Lorenz gauge Eq.
s39d, it follows that bothLm and Le satisfy wavelike equa-
tions, e.g.,

Tm = ·T m
−1 = Lm − TmeLm = − TmePe. s48d

The equation forLe is dual. Outside the support of the non-
radiating sources, these equations are homogeneousssource-
freed.

Also, in Appendix A, we show that the vector-potential
model is in accordance with theorem 1: it yields only locally
nonzero fields,E=−= Pe, H =−= Pm, in the case of gradient-
type nonradiating sources,Je

nr=TePe, Jm
nr=TmPm.

The above discussion is closely related to the field gauge
invariance. To make it more transparent, we consider the
case of a uniform loss-free medium, which is customary for
the classical vector potential theory. We first summarize the
well-known electromagnetic field and gauge invariance.
Adding a gradient term to the magnetic vector potentialA
sA =mAmd,

A8 = A +A, A = = L, s49d

changes neither theE nor theH field vector provided that, in
the same time, the electric scalar potentialF changes as

F8 = F + w, w = − ]tL. s50d

Since both the original 4-vectorsA ,Fd and the transformed
onesA8 ,F8d must satisfy the samesLorenzd gauge, the sca-
lar functionL is not completely arbitrary: it must satisfy the
homogeneous wave equation,

=2L − me]ttL = 0. s51d

We now turn back to the vector potentialAm
nr, see Eq.

s47d, due to a gradient-type nonradiating currentJe
nr

=Te= Pe in the case of a uniform loss-free medium, and
compare with the field gauge invariance. Equations47d can
be written as

]tA = = Lm, s52d

whereA=mAm
nr. Comparing Eq.s52d with Eq. s49d, we re-

lateLm andL asLm=]tL, which makes both equations iden-
tical. Also,

]tL = Pe − w. s53d

This is identical with the second equality in Eq.s50d when
Pe=0, i.e., outside the support of the nonradiating current
densityJe

nr.
We also note that, as follows from Eq.s48d,

=2L − me]ttL = − me]tPe, s54d

which is identical with Eq.s51d outside the nonradiating
source.

We complete this comparison by noting that the nonradi-
ating sourceJe

nr=TePe leads to anH field vector, which is
identically zero everywhere, and anE field vector, which is
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nonzero only locally within the source support,E=−= Pe.
The above comparison can be repeated with regard to the

electric vector potentialF.
To summarize, adding a gradient-type nonradiating source

to an original set of sources, leads to a change in the vector
potential in the form of the gradient of a scalar functionL,
which satisfies the wave equation. The field vectors remain
unchanged except within the support of the nonradiating
source. All changes occurring with the vector and scalar po-
tentials outside the nonradiating source are identical with
those associated with a gauge-invariant transformation. The
gauge-associated nonuniqueness of the vector potentials is
due to the nonuniqueness of the solution to the inverse elec-
tromagnetic problem, and, in particular, to the field invari-
ance with regard to gradient-type additions to its sources.

We also emphasize that a gradient-type nonradiating
source for theE andH field vectors is in fact a “radiating”
source for the vector potential. This is a situation, which is
desirable in the experiments on the measurability of the elec-
tromagnetic potentials. The mathematical reason for this dif-
ference lies in the different linear operators applied to the
pair sE ,Hd in the Maxwell equations and the vector potential
in the wave equation. It is discussed in more detail at the end
of this section.

C. Vector potentials and the equivalence between electric and
magnetic current sources

There is more to the nonuniqueness of the vector potential
representation of the electromagnetic field than the gradient
term considered above.

It is customary to think of the electrical current densities
as the sources of the magnetic vector potential, and of the
magnetic current densities as the sources of the electrical
vector potential; see Eqs.s37d and s38d. The equivalence
between electric and magnetic currents given by theorem 4
suggests that there exists a similar equivalence between the
magnetic and electric vector potentials.

We limit the analysis to the case of a uniform medium,
where the equivalence is greatly simplified because the mag-
netic and electric vector potentials are not coupled.

According to the field-potential relations in Eq.s45d, the
field described by the magnetic vector potentialAm is
equivalent to the field described by the electric vector poten-
tial Fe provided that

TeFe + = C = − = 3 Am, s55d

or

= 3 Fe = TmAm + = F. s56d

In other words, the magnetic vector potential can be equiva-
lently replaced by a properly chosen electric vector potential,
andvice versa, so that the field remains unchanged.

If Eq. s55d is enforced, theH vector remains unchanged
as indicated by the second expression in Eq.s45d. The E
vector also remains unchanged outside of the electrical
sourcesJe. This statement is proved by taking the curl of
both sides of Eq.s55d, and taking into account thatAm sat-
isfies the wave equation Eq.s40d. The result is

= 3 Fe = TmAm + = F − T e
−1Je. s57d

Outside of the support ofJe, Eq. s57d is identical with Eq.
s56d, and ensures unchangedE vector.

Similar argument applies if we assume that Eq.s56d
holds: theE vector remains the same everywhere, while the
H vector differs only at the location of nonzero magnetic
currentssif anyd.

The above transformations between equivalent magnetic
and electric vector potentials define yet another aspect of the
nonuniqueness of the vector-potential field representation. It
is utilized in numerical algorithmsf13,14g to scalarize the
electromagnetic field, i.e., to represent it in terms of two
scalar wave functions of space-time.

This nonuniqueness relates to the equivalence between
electric and magnetic sourcesssee theorem 4d, or the type of
nonradiating source discussed in theorem 2. Assume thatAm8
is due to Je8=−TeE, while Fe8 is due to Jm8 =−= 3E, and
consider the simultaneous existence of both sources and their
respective vector potentials. With these sources, Eq.s42d and
Eq. s43d can be reexpressed as

− = 3 s− TeFe8 − = C8 + = 3 Am8 d

+ Tes− TmAm8 − = F8 − = 3 Fe8 −Ed = 0, s58d

= 3 s− TmAm8 − = F8 − = 3 Fe8 −Ed

+ Tms− TeFe8 − = C8 + = 3 Am8 d = 0, s59d

which leads to the Maxwell system,

− = 3 H + TesE −Ed = 0,

= 3 sE −Ed + TmH = 0. s60d

The particular solution of this system is trivial, i.e., the si-
multaneous action of the sourcesJe8=−TeE and Jm8 =−=
3E results in zero fields, with the exception that theE vec-
tor is nonzero at points whereE exists,E=E, which is a
result consistent with theorem 2. Thus

TeFe8 + = C8 = = 3 Am8 s61d

and

− = 3 Fe8 = TmAm8 + = F8 +E. s62d

In a linear medium, the total cancellation of the fields
generated byJe8=−TeE and Jm8 =−= 3E means that these
fields are equal in magnitude but opposite in sign. Naturally,
they can be made equivalent if the sign of one of the sources
changes. For example, the field generated byJe=−TeE alone,
is the same as the field generated byJm= = 3E, which is in
accord with theorem 4. Their respective vector potentials,Am

andFe, relate as

TeFe + = C = − = 3 Am, s63d

and

= 3 Fe = TmAm + = F +E. s64d

Equations63d and Eq.s64d, which relate the vector potentials
due to equivalent sources, are identical with Eq.s55d and Eq.

N. K. NIKOLOVA AND Y. S. RICKARD PHYSICAL REVIEW E 71, 016617s2005d

016617-6



s57d, which relate equivalent vector-potential field represen-
tations. We conclude that the nonuniqueness associated with
field-invariant transformations between magnetic and electric
vector potentials is due to the field invariance with respect to
equivalent transformations between electric and magnetic
sources.

We make a note that, as in the case of the gradient-type
nonradiating source, the nonradiating combination of electric
and magnetic currents does, in fact, generate two propagat-
ing vector potentials, one electric and one magnetic. Their
net field, however, is zero outside of the source support.

D. Nonradiating sources for the vector potentials

To conclude this discussion, we point out that the vector
potentials have their own set of nonradiating sources, i.e.,
sources whose vector potentials are zero outside of their sup-
port. These are derived according to theorem 3. For example,
the current density

− sJe
nrdA = =2A − TmeA, s65d

is a nonradiating vector-potential source in a uniform me-
dium, see Eq.s40d. Here,A is an auxiliary vector, which is
identical with the vector potential generated bysJe

nrdA.
As expected, sources exist, which are nonradiating for

both the field vectors and the vector potentials. They belong
to the type of sources described by theorem 3; see Eq.s21d
and Eq.s23d. Certain limitations apply, however. It can be
shown that a nonradiating source described by Eq.s21d or
Eq. s23d is nonradiating for the respective vector potential as
well only if it is also purely rotational, i.e., divergence-free.
The nonradiating sources considered in the previous two sec-
tions do not belong to this group. As a result, although their
field vectors vanish outside of their support, their vector po-
tentials do not.

VI. CONCLUSION

We have derived the mathematical forms of three types of
nonradiating electromagnetic sources in a nonuniform me-
dium. Subsequently, we have used them to show that an in-
finite set of equivalent sources exists for a given original
source: we derive the equivalence between electric and mag-
netic current densities, as well as recursivessecond-orderd
equivalent source transformations. Higher-order recursive
source transformations are possible provided that the respec-
tive derivatives of the original sources exist.

We consider the nonuniqueness of the electromagnetic
field representation via vector potentials to be a consequence
of the field invariance to the equivalent transformations of its
sources. We examine the relationship betweensid the well-
known gauge invariance of the field and its invariance to
gradient-type current sources, andsii d the field invariance to
electric-magnetic source transformations and the respective
magnetic-electric vector potential transformations. In these
two cases, we show that the sources, which are nonradiating
for the field vectors, are “radiating” for the vector potentials
in the sense that the vector potentials they generate are not
confined within their support.

APPENDIX A

We write the vector-potential wave equations for the case
when only the nonradiating sourcesJe

nr=Te= Pe and Jm
nr

=Tm= Pm exist:

=2Am − TmeAm + s=Ted 3 Fe + s=TedF = − Te = Pe,

sA1d

=2Fe − TmeFe − s=Tmd 3 Am + s=TmdC = − Tm = Pm.

sA2d

The gauge is

− TeF = = ·Am,

− TmC = = ·Fe. sA3d

We rewrite the vector-potential equations, Eqs.sA1d and
sA2d, as

− = 3 s− TeFe − = C + = 3 Am + = Pmd

+ Tes− TmAm − = F − = 3 Fe + = Ped = 0, sA4d

= 3 s− TmAm − = F − = 3 Fe + = Ped

+ Tms− TeFe − = C + = 3 Am + = Pmd = 0, sA5d

and we define auxiliary field vectors asfrefer also to Eq.
s45dg

E8 = − TmAm − = F − = 3 Fe + = Pe = E + = Pe,

H8 = − TeFe − = C + = 3 Am + = Pm = H + = Pm.

sA6d

It then follows from Eqs.sA4d and sA5d that these vectors
satisfy the system

= 3 H8 − TeE8 = 0,

− = 3 E8 − TmH8 = 0. sA7d

As this is a homogeneous system of equationssof zero initial
and boundary conditionsd, it has only a trivial particular so-
lution. Therefore, see Eq.sA6d,

E = − = Pe, H = − = Pm. sA8d

This result is consistent with theorem 1.

APPENDIX B

We seek the mathematical form of the vector potentials
Am andFe in the case of gradient-type nonradiating sources,
Je

nr=Te= Pe andJm
nr=Tm= Pm. We make use of Eq.sA8d and

the field-potential relations in Eq.s46d, whereTeE cancels
Je

nr, andTmH cancelsJm
nr. The result is a system of equations,

= 3 = 3 Am = = 3 TeFe,

= 3 = 3 Fe = − = 3 TmAm, sB1d

which relatesAm and Fe in space-time. These two vectors,
however, are decoupled except at points of medium nonuni-
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formities. The above can be true at any point of space-time
for both uniform and nonuniform regions only if

= 3 = 3 Am = = 3 TeFe = 0,

= 3 = 3 Fe = − = 3 TmAm = 0. sB2d

We then conclude that

TeFe = = Le, TmAm = = Lm, sB3d

whereLe andLm are scalar functions.
To find the exact form ofLe and Lm, we substitute Eq.

sB3d in the field-potential relations of Eq.s45d:

− = Pe = − = Lm − = F − = 3 Fe,

− = Pm = − = Le − = C + = 3 Am. sB4d

Taking the divergence of both sides of each of the equations
in Eq. sB4d leaves us with two independent Laplace equa-
tions,

=2sF − Pe + Lmd = 0 sB5d

and

=2sC − Pm + L«d = 0. sB6d

The case of zero boundary conditions leads to a trivial solu-
tion and a simple relation between the three scalar functions
in each of the above equations:

Lm = Pe − F, L« = Pm − C. sB7d
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