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Nonradiating electromagnetic sources are sources whose field is identically zero outside of their volume.
They are undetectable unless the observation point is in direct contact with them. They are the basis of the
theory of source equivalence, which studies the field invariance with respect to source transformations. In this
work, we focus on the equivalent source transformations in a nonuniform medium and the implications in the
theory of the electromagnetic vector potentials. We identify three types of nonradiating sources. Subsequently,
we define the mathematical transformations of the sources, which preserve the field outside of their support
(source invariange We give complimentary expressions, which preserve the field inside the source support as
well. We show that the nonuniqueness of the electromagnetic potentials is due to the nonunique solution to the
inverse problem. The well known field gauge invariance follows from its source invariance. Also, the gauge-
invariant transformation appears to be just one possibility in an infinite set of field-invariant vector-potential
representations all related to the respective equivalent source transformations.
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I. INTRODUCTION AND DEFINITIONS ating parts of a source distribution have also been proposed
[9,10]. The attention has always been on the field extinction
The sources of the electromagnetic field are time-varyingutside of the source support, while the field within the non-
electric and magnetic current densities, the latter being conyadiating source is usually not considered.
monly treated as fictitious quantities. We assume that the Notably, the specifics of the case of a nonuniform medium
charge densities are related to their respective current dendiave been considered [idl]—a work where the construc-
ties via the continuity law. tion of equivalent sources for numerical computations is the
Two sources are considerejuivalentif they generate focus. The mathematical procedure for the construction of
identical fields. In general, the fields have to be identicathe equivalent source is based on a Helmholtz representation
outside the volumes of each of the sources and their spati@f the source vectors. Arbitrarily oriented electric-magnetic
derivatives, while they may differ insidel]. Hereafter, the ~source configurations areAtransformed into equivalent single-
volume where a source and its derivatives are nonzero igomponent codirectionali-oriented densities of electric
referred to as itssupport We assume that this support is and magnetic currents distributed in planes orthogonal.to
finite. The procedure is referred to as TE/TM source decomposi-

A source generating an electromagnetic field confine&ion’ also, source scalarization. The transformation is inde-
within its support is callechonradiating[2]. A nonradiating pendent of the constitutive parameters, and it allows field

source is undetectable unless the observation point is on gemputations in terms of two scalar functions of space-time.

. . . In this work, we state clearly the mathematical form of
W'th.'n Its vqlume_. It 1S now ot_)wous that t.W(.) SOUrces are nonradiating sources and the related source equivalence
equivalent if their difference is a nonradiating source of

L X . in the case of a nonuniform isotropic medium—a case of
bound supporf1]. Their fields are equivalent outside of the gionificant importance in computational electromagnetics

support of .the nonradlaltlng “difference” source. Thus, theand practical inverse scattering problems. We also show how
source equivalence requires a clear understanding of the no

. . t5 recover the original field inside the source support. We
radiating electromagnetic sources.

N diati d val h b thus hope to fill in a gap in the current knowledge on the
onradiating SOUrces and source equivaience have DLy, e of electromagnetic source equivalence and its numeri-

considered almost exclusively in a uniform medium, see, forca| implementation.

.example,['l—G]. .CIasses of nonradiating sources have been Most importantly, we consider the nonradiating sources
|qlent|f|ed In optics, see for examd]@,_S] ba_lsed_ on the equa- ot only in the context of field-based analysis with Max-
tion (.)f radiative ”?”Sfef as well as Its d|f_fus_|on approxima-, e equations but also in the context of the electromag-
tion, i.e., the equation Of. pho;on density d|§tr!but|on. Generg etic vector potentials. We show that the nonunigueness of
approaches to the identification of the radiating and nonrad|t-he vector-potential representation of the electromagnetic
field is a direct consequence of the nonunique solution to the
inverse problem. In other words, for a given physically ob-
* Author to whom correspondence should be addressed. FAX: 905ervable field, mathematically, there exists an infinite set of
521 2922. Electronic address: talia@mcmaster.ca sources capable of generating it. Accordingly, there is an
"Electronic address: rickardy@gquickclic.net infinite set of vector potentials, which represent the same
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electromagnetic field. What is considered by some to be a The time-domain analysis given hereafter can be directly
“drawback” of the vector potentials as opposed to the fieldransferred into the frequency domain with the replacement
vectorsE andH is, in fact, a remarkable feature allowing us of the operatord, and7, by jwe andjwu, respectively, in

to identify sources, which are “nonradiating” for the field the phasor form of Maxwell's equations, or in the Helmholtz
vectors but are “radiating” for the vector potentials. Thisequation. Here’e and i are the complex permittivity and
theory has potentially important implications in the ongoingpermeability, respectively.

dispute on the measurability of the vector potentials as well
as in the electromagnetic source identification.

The analysis is carried out in the time domain; however,
the results are easily transferrable into the frequency domain
as explained in the next section. Previous work, e.g[1,2], formulates two classes of non-

The paper is organized as follows. We first define threaadiating current densities in a uniform medium—those ex-
basic types of nonradiating sources. We then consider thpressible in terms of the gradient of a scalar, and those which
equivalence of sources, and suggest a general approach to the functions of a vector. Here, we give expressions for non-
construction of equivalent sources for a given original set ofadiating electromagnetic sources valid in nonuniform me-
sources. Further, we consider the nonradiating sources idia. They appear as generalizations of the sources discussed
conjunction with the vector potentials. We focus on the re-in [1,2]. We add a third class of nonradiating sour¢sse
lated nonuniqueness of the vector potentials and the electreheorem 2, which uses a specific combination of electric and
magnetic field invariance. magnetic current densities.

Theorem 1. Sources of bound support in the form of elec-
tric current density

I1l. NONRADIATING CURRENT SOURCES IN A
NONUNIFORM MEDIUM

Il. NOTATIONS
V=T, VP, (4)

First-order partial derivatives are denoted concisely by

i.e., 9,=alo¢. Similarly, higher-order derivatives appear as @nd/or magnetic current density

dgg= "1 9€AL, etc. . o RE 7,V Pm (5)
The operators/, and7,, relate to the time derivatives of
the flux densitieD andB, respectively, do not generate an electromagnetic field outside of their own
B B support P, and B, can be any scalar functions of space-time
&D=TE, 4B=TH. (1) whose first-order derivatives are well defined. The field they
For example, in a nondispersive mediuffi=ed+ o, and generate is localized at points of nonzely, where
7,= pmii+ oy, Wheree is the permittivity,u is the permeabil- E=- VP, (6)

ity, . and o, are the specific electric and magnetic conduc-

tivities, respectively. The formulas in E€lL) are in effect the ~and nonzeral;, where

time-dependent constitutive relations. The involved constitu- He_ VP 7)

tive parameters are tensors in the case of an anisotropic me- m*

dium although here we focus on the isotropic case. Proof. The field excited by)2" andJ! satisfies the Max-
We also make use of the operatdf§" and T;Ll, which  well equations

are the inverse of, and7,, respectively. They have simple

analytical form in the case of a dispersion-free loss-free me- VXH=TE+T, VP,
dium, e.g.,?;lz € .. In the case of a dispersive lossy me-
dium, general analytical expressions are not available, how- -VXE=TH+T,VP,. (8)

ever, their discrete numerical counterparts always exist. We _ . . . .
also use the second-order operafgr=7,7. In a nondis- We are interested in the particular solution corresponding to
ne

persive medium?7,,,= puedy+ €0+ pod) o+ o0 the specified sources only, and to the field zero boundary
ne m e em- . . .
In the nonuniform medium analysis, where the gradient§ond't'ons' Equatiori8) can be rewritten as

of the constitutive parameters are involved, we use the gra- VXH =T,E,
dient vector operatoreV7,) and(V7,):
(VI)=(Ved +(Voy), - VXE'=T,H, 9
whereH’=H+ VP, andE’'=E+ VP,. SinceJ]" andJ] are
(VT,) = (V) + (Voy), (2)  of bound support, the particular solution of interest to .

is trivial: H'=0, E'=0. Thus the fielde andH generated by

that, for exampl . . e
S0 that, Tor exampre, Jo'andJy is localized at the sources and is given by Hj.

(VI)P=(Ve)gd + (Vo) P, and Eq.(7). [ |
A simple example is the current density in a conducting
(VT) X F.=(Ve) X F.+ (Vo) X F 3) medium under steady-current conditions, whEre-V ¢, ¢
c e ‘ “ being the electric scalar potential. The current density,is
where® is a scalar andr, is a vector. =-0,V ¢. This is a particular form of Eq4) where ¢=P,,
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and 7, reduces to7.=o, since ¢ is constant in timegd,¢»  used in conjunction with electromagnetic duality, see, for
=0. It is well known that steady currents do not radiate.  example[12].

However, in a uniform medium, even if the current is Theorem 3. Assume that the vector fiéldsatisfies the
time-varying, it would not radiate beyond its support, pro-equation
vided that in space it can be represented by the gradient of a _
scalar:J)'=V(7.P,). Curl-free currents do not radiate. They LA=G, a7
are due to external electromotive forces, which are conservayhere L is any linear operator, an@ represents sources. If
tive in nature. Gradient type nonradiating sources in a unisources exist, which are expressible in the from
form medium are discussed [ifi]; see alsd9]. Note that the
source equal to the gradient of a scalar may, in general, ra- G"=LB, (18

diate if it exists in a locally nonuniform medium. _ then these sources do not radiate beyond their own support.
Theorem 2. Combinations of electric and magnetic Curhg yectom is exactly the nonpropagating vector field gen-
rent densities of the forms erated byG™.
IM=_TE J'=-V XE (10) Proof. In the presence of the source in Ef8), Eq. (17)
can be written as
and
L(A-B)=0. (19
I=-TH, =V XH, 11 ) .
m H € H (D As both vector field®\ andB satisfy the same zero boundary
where€ andH can be any vectors with well defined deriva- conditions, the above equation has only a trivial particular

tives, produce zero field outside of their own support solution for the given sources. Thids=B. [ |
Proof. Consider the source set in Ed.0). Substituting it The above theorem leads to the formulation of yet another
in Maxwell's equations, we have type of nonradiating electromagnetic sources. Having in

mind the vector equation for thEe-field in the presence of

VXH=T,(E-8), electrical current densities,

-V X (E-£)=TH. (12) VXT,'V XEe+TE.=-1, (20)

As before, we are concerned only with the particular solutiofve conclude that in a nonuniform medium electrical sources
due to the specified sourcésith zero boundary conditions ©f the type
for the field. With respect to the vectold andE’'=E-E,
the system above is homogeneous, i.e., source-free; there-
fore, the solution is produce zercE-field outside of the support of, i.e., EY
E-£ H=0 (13 =& Then, from Maxwell's equation$i)'=-7'V X £.

' Similarly, the vector equation for thid-field in the pres-

Analogously, in the case of the source given by 84), ence of magnetic sources is

the solution appears as
PP VX T2V X Hp* T,Hm= - o (22)
E=0, H=H. (14)

=V XT,'V XE+TE (21)

Thus, if these sources are given by
Both solutions are local in the sense that they are nonzero or .
only inside the source. [ “In=VXTVXH+TH, (23

As an example, consider the time-varying current in nr_ nr_ -1
wire loop whose density is expressedlas edE, where “thenHy=", andER =72V X 7.
is the unit vector in cylindrical coordinates, afids constant
along the loop. The loop is centered onto the origin of th
coordinate system and its axis is along #eis. Its radius is
a. A magnetic currenk,, along thez axis can now be defined:

IV. EQUIVALENCE OF CURRENT SOURCES
Im:ff Jin - Zds.
A

The nonradiating sources defined by E2fl) and Eq.(23)
are generalizations of a nonradiating source first considered
®y Devaneyet al. [2].

(15) A. Equivalence between electric and magnetic current sources
Theorem 4. The field generated by the magnetic current

densityJ,, is identical to the field generated by the electric

current densityd, outside the sources’ support provided that

We set],,=V X & as per Eq(10). Using Stokes theorem, we
find that

lm=2mas,V. (16) Vv % T;lJm=Je, (24)
If 1,,is placed at the origin together with the electric-current
loop, their respective fields will cancel outside of the volume®"
of the loop, resulting in a zero total field. The equivalence of -V X T,=3,. (25)
the fields due to small electrical loops and magnetic dipoles €
has long been known to antenna engineers, and is widely Proof. This theorem follows directly from theorem 2. For
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example, assume thak, in Eq. (24) is expressed ad,, The equivalence of any two sources can be validated by
=-7,H. It generates the fieltE,,H,). It then follows that  considering their difference. If it produces a nonradiating
Join Eq. (24) is J,.=—V X H. Let its field be(E¢,H,). If we  source, the fields of these two sources are identical outside of
consider the source set formed by and -J,, we see that it the support of this “difference” source.
is nonradiating, see Eq11). This proves thad, andJ,, are
equivalent, and their respective fields are identical outside of
the support ofH. The difference field is nonzero only inside  Provided that the higher-order derivatives of the original
the support ofH, and it is current densities exist, we can apply the equivalent source

E —E.=0 transformations Eq(24) and Eq.(25), recursively. In other

m =eT words, we can find the equivalent of the original source, then

the equivalent of the equivalent, and so on. Therefore, there
Hip—He="H. (26) is an infinite number of equivalent sources for an original

Analogous proof holds for the equivalence of the sourceS$OUrce whose higher-order derivatives exist.

given in Eq.(25). This time the difference between the two ~ Consider as an example an original source giverlhy
=-7_&,. From Eq.(25), an equivalent magnetic current den-

B. Recursive source transformations

fields is
sity J,p=V X &, is found, with the equivalent fields being
Ee—En=¢, H,=H,, E,=E,-&,, as per Eq(27). Further, from Eq(24),
we find the equivalend as
H.—-H,=0, 27 _ _
em 27 Jg= VX T, 0=V XT,'V X E,. (33)
where(Eg, H,) is the field due tal,=-7.€, and(E,,H) is ] )
the field due tal,,=V X £. m [his can be written also as
To recapitulate, we reexpress Theorem 4 in terms of the T.E,=-V X T;lv X £, (34)

auxiliary vectors€ and’H, and state thahe electric current

density J.=V XH is equivalent to the magnetic current whereJgs=-7.E3. The field (E3,Hs), generated byl re-

density J,=7,H. The dual equivalence involve},=V lates to(E,,H,) asE3=E,, H3=H2+T;1V X &4, according

X € and J,=-T.E. to Eq. (26), where we have substitute®(,=~7,'V X &,.
Theorem 4 is an extension of the electric-magnetic sourc&he latter comes from representifg, asdpp=-7,H,asin

equivalence considered first by Mayg$ to the case of a the proof of theorem 4, and then equating thisJig=V

nonuniform medium. X €;. Finally, the difference between the equivalent field
The above theorem suggests the existence of two equivadE;,H;) and the original fieldE;,H,), is

lent current distributions for a given original source. This

deserves some additional comment. Suppose the original Hy=H;=T7,'V X &,

source is given byg. Then, there are two possible equivalent

magnetic current distributiondy, andJs,, such that E;-E,=-&,. (35

V X T;lJemlz Je, (28 The difference field is nonzero only within the suppor#gf
Note that the equivalence of the first and the third source
e,=-V X 7;1\32. (29 is evident also from the fact that their difference yields

Hence JE, andJZ, must be mutually equivalent, too. This is Ja=Ja=TE1+ V X T,V X &, (36)
true, and it can be shown by considering their difference. W‘?Nh' : o :

1 ich is a nonradiating source of the form of Eg1) with a
apply the operatoV X T " to Eq.(29) and form an expres- minus sign. The difference field derived in E@5) corre-

sion for. the difference of the two magnetic equlValemsponds exactly to the field of the nonradiating source defined
sources: by Eqg.(21) with a minus sign.
Vv X 7'1(3;2_36 Y=—(VX TV x 7:23%+39). In the time domain, the second-order source transforma-
y23 ml M € e e . . -
30 tion given by Eq(34) leads to a sequence of sources derived
rom each other as time progresses. This equivalent-source
B0 ¢ h oth i This equival
The left-hand side, by its dimensionality, corresponds to aripropagation” is wavelike and very much analogous to the

equivalent electric current densifgee also Eq(24)], 835, way the field itself propagates.
such that Higher-order recursive transformations are possible with

sources whose respective derivatives exist.

8=~ (VX T,'V x T3+, (31)
. . V. NONRADIATING SOURCES AND
which can be reexpressed in the form VECTOR POTENTIALS
- -1
8Je=—(VXT,[V XE+TE), (32 A. Vector potentials in a nonuniform medium

whereJg=7.E. This expression, as we showed before in Eq. The vector-potential representation in a nonuniform iso-
(21), indicates a nonradiating electric source in a nonuniforntropic medium in the presence of electrical and magnetic
medium. currents i913,14
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VA, - T, A, +(VT) X F +(VI)d=-J,, (37 TAT=VA, TF'=VA. (47)

Here, A ,=P.—¢ and A .=P,,— ¢, with ¢ and ¢ being the

2 _ _ - _ " e € m

VF T Fe— (VI) XA+ (VT)V ==Jn, (38  geqlar potentials té\}’ and FY', respectively. Sincé\} and
where the magnetic potential, (measured immperesand ¢, @ well as=" and y, relate through the Lorenz gauge Eq.
the electric potentiaF, (measured ivolts relate to the con- (39, it follows that bothA,, and A satisfy wavelike equa-
ventional vector potential® and F as A ,=A/u and F, tions, e.g.,

=F/e. The scalar potentiald and¥ are defined through a TV -TIYWA T A =T P 48
generalized Lorenz gauge # m mooTpeTR pe & (48)
The equation for\ . is dual. Outside the support of the non-

“TD2=V A, radiating sources, these equations are homoger(sousce-
free).
-7,¥=V -F. (39 Also, in Appendix A, we show that the vector-potential

model is in accordance with theorem 1: it yields only locally
nonzero fieldsE=-VP,, H=-VP,, in the case of gradient-
type nonradiating sourcedg =7.P,, J1=7,Pp,
The above discussion is closely related to the field gauge
VZA,L—TMAM:—J@ (40) invariance. 'I_'o make it more transparent, we consider the
case of a uniform loss-free medium, which is customary for
VE T F =3 (41) the classical vector potential theory. We first summarize the
€ fpe e T ¥me well-known electromagnetic field and gauge invariance.
The field-potential relations are obtained by writing Egs.Adding a gradient term to the magnetic vector potenéial
(37) and(398) in a form equivalent to that of Maxwell’'s equa- (A=pA,L),

tions [13]: A'=A+A, A=VA, (49

~VX(TF-VU+V XA changes neither the nor theH field vector provided that, in
+T(-TA,-Vd-V XF)=-1, (42)  the same time, the electric scalar potendlathanges as

P'=P+¢p, @=-A. (50)

Since both the original 4-vectdA ,d) and the transformed
+T,(-TF.-V¥+V XA)=-J, (43 one(A’,®’') must satisfy the sam@.orenz gauge, the sca-
lar function A is not completely arbitrary: it must satisfy the
homogeneous wave equation,

V2A - uedyA =0. (51)

The vector-potential equations, Eq&37) and (38), are
coupled if the medium is nonuniform. Otherwise, they de-
couple and reduce to the conventional wave equations:

VX(-TA,-VO-V XF,)

The comparison between Edg2) and (43) and Maxwell's
equations,

-V XH+7TE=-],,
We now turn back to the vector potentialf, see Eq.
X - ;
VXE+TH=-J_, 44 (47), du_e to a gradlent-type nonradiating cu_rreﬂ@
" m (44) =7.VP, in the case of a uniform loss-free medium, and
shows that the field vectors appear in terms of the vectogompare with the field gauge invariance. Equatidd) can

potentials as be written as
E=-TA,-V®-V xXF, GA=VA,, (52
where A=pA’l. Comparing Eq(52) with Eq. (49), we re-
H=-7TF.-V¥+V XA, (45 lateA, andA asA,=gA, which makes both equations iden-
ical. Al
The substitution of Eqg45) into Maxwell’'s system leads to tical. Also,
an alternative field-potential relation: I\ =Pe— . (53
TE=V X (VXA,-TF)-J,, This is identical with the second equality in E&0) when
: P.=0, i.e., outside the support of the nonradiating current
TH=V X(VXFA4TA,)-] (a)  densivde:
w T € T m- We also note that, as follows from E@L8),
Equation(45) and Eq.(46) are equivalent. V2A - wedyA = — pediPy, (54)

which is identical with Eq.(51) outside the nonradiating
source.

Assume the existence of nonradiating sources of the type We complete this comparison by noting that the nonradi-
given by Egs.(4) and (5). They generate vector potentials, ating sourcely =7.P, leads to arH field vector, which is
A7l andFY', whose solutions, as shown in Appendix B, are identically zero everywhere, and &nfield vector, which is

B. Nonradiating gradient sources and gauge invariance
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nonzero only locally within the source suppditz-V Pe. VXF=TA,+V® _7:139_ (57)
The above comparison can be repeated with regard to the o . )
electric vector potentiafF. Outside of the support al,, Eq. (57) is identical with Eq.

To summarize, adding a gradient-type nonradiating sourcé6), and ensures unchanggdvector.
to an original set of sources, leads to a change in the vector Similar argument applies if we assume that EE6)
potential in the form of the gradient of a scalar functidn holds: theE vector remains the same everywhere, while tr_\e
which satisfies the wave equation. The field vectors remaifl vector differs only at the location of nonzero magnetic
unchanged except within the support of the nonradiatingurrents(if any). _ .
source. All changes occurring with the vector and scalar po- The above transformations between equivalent magnetic
tentials outside the nonradiating source are identical wittfnd electric vector potentials define yet another aspect of the
those associated with a gauge-invariant transformation. Theonuniqueness of the vector-potential field representation. It
gauge-associated nonuniqueness of the vector potentials ifis Utilized in numerical algorithm$13,14 to scalarize the
due to the nonunigueness of the solution to the inverse ele@lectromagnetic field, i.e., to represent it in terms of two
tromagnetic problem, and, in particular, to the field invari-Scalar wave functions of space-time.
ance with regard to gradient-type additions to its sources. ~ This nonuniqueness relates to the equivalence between

We also emphasize that a gradient-type nonradiatinglectric and magnetic sourcésee theorem)or the type of
source for theE andH field vectors is in fact a “radiating” Nnonradiating source discussed in theorem 2. AssumeAthat
source for the vector potential. This is a situation, which isiS due toJ.=-7.E, while F_ is due toJ;=-V X £, and
desirable in the experiments on the measurability of the elecconsider the simultaneous existence of both sources and their
tromagnetic potentials. The mathematical reason for this diff€Spective vector potentials. With these sources(42).and
ference lies in the different linear operators applied to theEd. (43) can be reexpressed as

pair (E,H) in the Maxwell equations and the vector potential SV X(-TF. - V¥ +V xA")

in the wave equation. It is discussed in more detail at the end € K

of this section. +T(-TA,-VO' -V XF. -£)=0, (59
C. Vector potentials and the equivalence between electric and VX(-TA,-VO&' -V XF_-§)

magnetic current sources +T(-TF - VW +V XA')=0 (59)
” € € W

There is more to the nonuniqueness of the vector potential
representation of the electromagnetic field than the gradier‘r‘t"h'Ch leads to the Maxwell system,

term considered above. -V XH+T(E-E&)=0,
It is customary to think of the electrical current densities
as the sources of the magnetic vector potential, and of the VX(E-E+TH=0 (60)
L .

magnetic current densities as the sources of the electrical

vector potential; see Eq$37) and (38). The equivalence The particular solution of this system is trivial, i.e., the si-

between electric and magnetic currents given by theorem #ultaneous action of the sourcd§=-7.€ and J/,=-V

suggests that there exists a similar equivalence between the€ results in zero fields, with the exception that tBevec-

magnetic and electric vector potentials. tor is nonzero at points wher€ exists,E=&, which is a
We limit the analysis to the case of a uniform medium,result consistent with theorem 2. Thus

where the equivalence is greatly simplified because the mag- , , ,

netic and electric vector potentials are not coupled. IF A+ V¥ =V XA, (61)
According to the field-potential relations in E@5), the  gnd

field described by the magnetic vector potenti), is ) . ,

equivalent to the field described by the electric vector poten- - VXF=TA+ VI +E. (62)

tial F, provided that In a linear medium, the total cancellation of the fields

TF+V¥=-V XA, (55)  generated byl =-7.€ and J;,=-V X £ means that these
fields are equal in magnitude but opposite in sign. Naturally,
or they can be made equivalent if the sign of one of the sources
_ changes. For example, the field generated dsy~7_€ alone,
VXFe=T A+ VO (56) is the same as the field generatedJgy=V X €, which is in
In other words, the magnetic vector potential can be equivaaccord with theorem 4. Their respective vector potenti]s,
lently replaced by a properly chosen electric vector potentialandF,, relate as
andvice versaso that the field remains unchanged. TE+VW=-V XA (63)
If Eq. (55) is enforced, theH vector remains unchanged c -
as indicated by the second expression in Edf). The E and
vector also remains unchanged outside of the electrical _
sources].. This statement is proved by taking the curl of VXFET A+ VETE. (64)
both sides of Eq(55), and taking into account th# , sat-  Equation(63) and Eq.(64), which relate the vector potentials
isfies the wave equation E¢0). The result is due to equivalent sources, are identical with &) and Eq.
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(57), which relate equivalent vector-potential field represen- APPENDIX A

tations. We conclude that the nonuniqueness associated with \y. \vrite the vector-potential wave equations for the case
field-invariant transformations between magnetic and electrig ;. . only the nonradiating source'=7.VP, and J"
vector potentials is due to the field invariance with respect tq_ €« e m

. . . =T,VP,, exist:
equivalent transformations between electric and magnetic ~*
sources. VA, -T,A,+(VT) XF +(VI)d=-T_VP,
We make a note that, as in the case of the gradient-type (A1)

nonradiating source, the nonradiating combination of electric

and magnetic currents does, in fact, generate two propagat- VE -T F - (VI)XA +(NT)W=-T VP

ing vector potentials, one electric and one magnetic. Their e Tude= (VT wt (V) pooom
net field, however, is zero outside of the source support. (A2)

The gauge is

D. Nonradiating sources for the vector potentials
g P ~TH=V A,

To conclude this discussion, we point out that the vector
potentials have their own set of nonradiating sources, i.e., -7 V=V -F,. (A3)
sources whose vector potentials are zero outside of their sup- ”
port. These are derived according to theorem 3. For exampld\Ve rewrite the vector-potential equations, Egal) and
the current density (A2), as

—(Jgr)A=V2A—TMEA, (65) - VX(-TF-V¥+V XA, +VP,

is a nonradiating vector-potential source in a uniform me- 1T A= VO -V XF +VP)=0, (Ad)
dium, see Eq(40). Here,.A is an auxiliary vector, which is
identical with the vector potential generated (@3y")". VX(TA,-VP-V XF + VP

As expected, sources exist, which are nonradiating for +T(~-TF.~ VW+V XA, +VP)=0, (A5)
both the field vectors and the vector potentials. They belong
to the type of sources described by theorem 3; seqE(y. and we define auxiliary field vectors §eefer also to Eq.
and Eq.(23). Certain limitations apply, however. It can be (45)]
shown that a nonradiating source described by @4) or
Eq. (23) is nonradiating for the respective vector potential as
well only if it is also purely rotational, i.e., divergence-free. , _
The nonradiating sources considered in the previous two sec- H'==TF = V¥+V XA+ VPy=H+ VPp
tions do not belong to this group. As a result, although their (A6)
field vectors vanish outside of their support, their vector po-
tentials do not.

E'=-T,A,- VO-V XF+ VP=E+ VP,

It then follows from Eqgs(A4) and (A5) that these vectors
satisfy the system
VI. CONCLUSION VXH'-1E'=0,

We have derived the mathematical forms of three types of -V XE'-TH =0. (A7)

nonradiating electromagnetic sources in a nonuniform me-

dium. Subsequently, we have used them to show that an irf:S this is @ homogeneous system of equati@igero initial
finite set of equivalent sources exists for a given original@"d boundary conditionsit has only a trivial particular so-

source: we derive the equivalence between electric and magition. Therefore, see EGAG),
netic current densities, as well as recurs{gecond-order E=-VP, H=-VP,. (A8)
equivalent source transformations. Higher-order recursive . ) ) }
source transformations are possible provided that the respe&is result is consistent with theorem 1.
tive derivati\_/es of the origin_al sources exist. _ APPENDIX B

We consider the nonuniqueness of the electromagnetic
field representation via vector potentials to be a consequence We seek the mathematical form of the vector potentials
of the field invariance to the equivalent transformations of its" . @andF. in the case of gradient-type nonradiating sources,
sources. We examine the relationship betwéenhe well-  Je =Z.VPe andJ =7,V P We make use of EJA8) and
known gauge invariance of the field and its invariance tothe field-potential relations in Eq46), where7.E cancels
gradient-type current sources, afid the field invariance to  Je, and7,H cancels]y. The result is a system of equations,

electric-magnetic source transformations and the respective VXV XA =V XTF
magnetic-electric vector potential transformations. In these K’ <
two cases, we show that the sources, which are nonradiatin __

9 VXV XF=-VXTA,, (B1)

for the field vectors, are “radiating” for the vector potentials
in the sense that the vector potentials they generate are natich relatesA , and F, in space-time. These two vectors,
confined within their support. however, are decoupled except at points of medium nonuni-
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formities. The above can be true at any point of space-time ~VPa=-VA-VV¥+V XA, (B4)

for both uniform and nonuniform regions only if

VXV XA,=V XTF.=0,

VXV XF=-VXTA,=0. (B2)
We then conclude that
TF.=VA, TA,=VA, (B3)

whereA, and A, are scalar functions.
To find the exact form ofA, and A ,, we substitute Eq.
(B3) in the field-potential relations of Eq45):

~VP,=-VA,-Vd-V xF,

Taking the divergence of both sides of each of the equations
in Eq. (B4) leaves us with two independent Laplace equa-
tions,

VH®-Pe+A,)=0 (B5)
and
VAV -P,+A,)=0. (B6)

The case of zero boundary conditions leads to a trivial solu-
tion and a simple relation between the three scalar functions
in each of the above equations:

Ay=Pe—®, A =P,-V. (B7)
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